3.3.98 \(\int \cos (c+d x) \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \, dx\) [298]

Optimal. Leaf size=231 \[ \frac {2 \left (5 a A b-2 a^2 B+9 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) (5 A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 (5 A b-2 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b d}+\frac {2 B (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b d} \]

[Out]

2/5*B*(a+b*cos(d*x+c))^(3/2)*sin(d*x+c)/b/d+2/15*(5*A*b-2*B*a)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b/d+2/15*(5*A
*a*b-2*B*a^2+9*B*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(b/
(a+b))^(1/2))*(a+b*cos(d*x+c))^(1/2)/b^2/d/((a+b*cos(d*x+c))/(a+b))^(1/2)-2/15*(a^2-b^2)*(5*A*b-2*B*a)*(cos(1/
2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(b/(a+b))^(1/2))*((a+b*cos(d*x+c
))/(a+b))^(1/2)/b^2/d/(a+b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 231, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {3047, 3102, 2832, 2831, 2742, 2740, 2734, 2732} \begin {gather*} -\frac {2 \left (a^2-b^2\right ) (5 A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 \left (-2 a^2 B+5 a A b+9 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}+\frac {2 (5 A b-2 a B) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{15 b d}+\frac {2 B \sin (c+d x) (a+b \cos (c+d x))^{3/2}}{5 b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]),x]

[Out]

(2*(5*a*A*b - 2*a^2*B + 9*b^2*B)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(15*b^2*d*Sqr
t[(a + b*Cos[c + d*x])/(a + b)]) - (2*(a^2 - b^2)*(5*A*b - 2*a*B)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*EllipticF
[(c + d*x)/2, (2*b)/(a + b)])/(15*b^2*d*Sqrt[a + b*Cos[c + d*x]]) + (2*(5*A*b - 2*a*B)*Sqrt[a + b*Cos[c + d*x]
]*Sin[c + d*x])/(15*b*d) + (2*B*(a + b*Cos[c + d*x])^(3/2)*Sin[c + d*x])/(5*b*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2831

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2832

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Sim
p[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \cos (c+d x) \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \, dx &=\int \sqrt {a+b \cos (c+d x)} \left (A \cos (c+d x)+B \cos ^2(c+d x)\right ) \, dx\\ &=\frac {2 B (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b d}+\frac {2 \int \sqrt {a+b \cos (c+d x)} \left (\frac {3 b B}{2}+\frac {1}{2} (5 A b-2 a B) \cos (c+d x)\right ) \, dx}{5 b}\\ &=\frac {2 (5 A b-2 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b d}+\frac {2 B (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b d}+\frac {4 \int \frac {\frac {1}{4} b (5 A b+7 a B)+\frac {1}{4} \left (5 a A b-2 a^2 B+9 b^2 B\right ) \cos (c+d x)}{\sqrt {a+b \cos (c+d x)}} \, dx}{15 b}\\ &=\frac {2 (5 A b-2 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b d}+\frac {2 B (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b d}-\frac {\left (\left (a^2-b^2\right ) (5 A b-2 a B)\right ) \int \frac {1}{\sqrt {a+b \cos (c+d x)}} \, dx}{15 b^2}+\frac {\left (5 a A b-2 a^2 B+9 b^2 B\right ) \int \sqrt {a+b \cos (c+d x)} \, dx}{15 b^2}\\ &=\frac {2 (5 A b-2 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b d}+\frac {2 B (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b d}+\frac {\left (\left (5 a A b-2 a^2 B+9 b^2 B\right ) \sqrt {a+b \cos (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}} \, dx}{15 b^2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {\left (\left (a^2-b^2\right ) (5 A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \cos (c+d x)}{a+b}}} \, dx}{15 b^2 \sqrt {a+b \cos (c+d x)}}\\ &=\frac {2 \left (5 a A b-2 a^2 B+9 b^2 B\right ) \sqrt {a+b \cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^2 d \sqrt {\frac {a+b \cos (c+d x)}{a+b}}}-\frac {2 \left (a^2-b^2\right ) (5 A b-2 a B) \sqrt {\frac {a+b \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )}{15 b^2 d \sqrt {a+b \cos (c+d x)}}+\frac {2 (5 A b-2 a B) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 b d}+\frac {2 B (a+b \cos (c+d x))^{3/2} \sin (c+d x)}{5 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.93, size = 179, normalized size = 0.77 \begin {gather*} \frac {2 \sqrt {\frac {a+b \cos (c+d x)}{a+b}} \left (b^2 (5 A b+7 a B) F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )+\left (5 a A b-2 a^2 B+9 b^2 B\right ) \left ((a+b) E\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )-a F\left (\frac {1}{2} (c+d x)|\frac {2 b}{a+b}\right )\right )\right )+2 b (a+b \cos (c+d x)) (5 A b+a B+3 b B \cos (c+d x)) \sin (c+d x)}{15 b^2 d \sqrt {a+b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]),x]

[Out]

(2*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*(b^2*(5*A*b + 7*a*B)*EllipticF[(c + d*x)/2, (2*b)/(a + b)] + (5*a*A*b -
2*a^2*B + 9*b^2*B)*((a + b)*EllipticE[(c + d*x)/2, (2*b)/(a + b)] - a*EllipticF[(c + d*x)/2, (2*b)/(a + b)]))
+ 2*b*(a + b*Cos[c + d*x])*(5*A*b + a*B + 3*b*B*Cos[c + d*x])*Sin[c + d*x])/(15*b^2*d*Sqrt[a + b*Cos[c + d*x]]
)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(992\) vs. \(2(269)=538\).
time = 0.35, size = 993, normalized size = 4.30

method result size
default \(\text {Expression too large to display}\) \(993\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/15*((2*cos(1/2*d*x+1/2*c)^2*b+a-b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)
^6*b^3+(20*A*b^3+16*B*a*b^2+24*B*b^3)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-10*A*a*b^2-10*A*b^3-2*B*a^2*b-
8*B*a*b^2-6*B*b^3)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/
2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+5*A*b^3*(sin(1/2*d*x+
1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^
(1/2))+5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*
d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b-5*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(
a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2+2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b
)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3-2*a*B*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-
b))^(1/2))*b^2-2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(
cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^3+2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(
a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a^2*b+9*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*
b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a*b^2-9*B*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2
*b/(a-b))^(1/2))*b^3)/b^2/(-2*sin(1/2*d*x+1/2*c)^4*b+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(-2*
sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*cos(d*x + c), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.15, size = 492, normalized size = 2.13 \begin {gather*} \frac {\sqrt {2} {\left (-4 i \, B a^{3} + 10 i \, A a^{2} b - 3 i \, B a b^{2} - 15 i \, A b^{3}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) + \sqrt {2} {\left (4 i \, B a^{3} - 10 i \, A a^{2} b + 3 i \, B a b^{2} + 15 i \, A b^{3}\right )} \sqrt {b} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right ) - 3 \, \sqrt {2} {\left (2 i \, B a^{2} b - 5 i \, A a b^{2} - 9 i \, B b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) + 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) - 3 \, \sqrt {2} {\left (-2 i \, B a^{2} b + 5 i \, A a b^{2} + 9 i \, B b^{3}\right )} \sqrt {b} {\rm weierstrassZeta}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (4 \, a^{2} - 3 \, b^{2}\right )}}{3 \, b^{2}}, -\frac {8 \, {\left (8 \, a^{3} - 9 \, a b^{2}\right )}}{27 \, b^{3}}, \frac {3 \, b \cos \left (d x + c\right ) - 3 i \, b \sin \left (d x + c\right ) + 2 \, a}{3 \, b}\right )\right ) + 6 \, {\left (3 \, B b^{3} \cos \left (d x + c\right ) + B a b^{2} + 5 \, A b^{3}\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{45 \, b^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/45*(sqrt(2)*(-4*I*B*a^3 + 10*I*A*a^2*b - 3*I*B*a*b^2 - 15*I*A*b^3)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 -
3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b) + sqrt(2)*(4*I*B
*a^3 - 10*I*A*a^2*b + 3*I*B*a*b^2 + 15*I*A*b^3)*sqrt(b)*weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*
a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b) - 3*sqrt(2)*(2*I*B*a^2*b - 5*I*A*a*b^
2 - 9*I*B*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, weierstrassPInver
se(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d*x + c) + 3*I*b*sin(d*x + c) + 2*a)/b))
 - 3*sqrt(2)*(-2*I*B*a^2*b + 5*I*A*a*b^2 + 9*I*B*b^3)*sqrt(b)*weierstrassZeta(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(
8*a^3 - 9*a*b^2)/b^3, weierstrassPInverse(4/3*(4*a^2 - 3*b^2)/b^2, -8/27*(8*a^3 - 9*a*b^2)/b^3, 1/3*(3*b*cos(d
*x + c) - 3*I*b*sin(d*x + c) + 2*a)/b)) + 6*(3*B*b^3*cos(d*x + c) + B*a*b^2 + 5*A*b^3)*sqrt(b*cos(d*x + c) + a
)*sin(d*x + c))/(b^3*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}} \cos {\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c)),x)

[Out]

Integral((A + B*cos(c + d*x))*sqrt(a + b*cos(c + d*x))*cos(c + d*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*cos(d*x + c), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \cos \left (c+d\,x\right )\,\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)*(A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________